General Weak Limit for Kähler-Ricci Flow

نویسنده

  • Zhou Zhang
چکیده

Consider the Kähler-Ricci flow with finite time singularities over any closed Kähler manifold. We prove the existence of the flow limit in the sense of current towards the time of singularity. This answers affirmatively a problem raised by Tian in [23] on the uniqueness of the weak limit from sequential convergence construction. The notion of minimal singularity introduced by Demailly in the study of positive current comes up naturally. We also provide some discussion on the infinite time singularity case for comparison. The consideration can be applied to more flexible evolution equation of Kähler-Ricci flow type for any cohomology class. The study is related to general conjectures on the singularities of Kähler-Ricci flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the weak Kähler-Ricci flow

where g(t) is a family of Kähler metrics and Ric(ωg) denotes the Ricci curvature of g. It is known that for any smooth Kähler metric g0, there is a unique solution g(t) of (1.1) for some maximal time T > 0 with g(0) = g0. In general, T will depend on the initial metric g0. However, in Kähler manifold, this only depends on the Kähler class and the first Chern class. This observation plays a impo...

متن کامل

Kähler-Ricci Flow with Degenerate Initial Class

In [2], the weak Kähler-Ricci flow was introduced for various geometric motivations. In the current work, we take further consideration on setting up the weak flow. Namely, the initial class is allowed to be no longer Kähler. The convergence as t → 0 is of great importance to study for this topic. 1 Motivation and Set-up Kähler-Ricci flow, the complex version of Ricci flow, has been under inten...

متن کامل

On the Convergence of a Modified Kähler-Ricci Flow

We study the convergence of a modified Kähler-Ricci flow defined by Zhou Zhang. We show that the flow converges to a singular metric when the limit class is degenerate. This proves a conjecture of Zhang.

متن کامل

The Kähler Ricci Flow on Fano Surfaces (I)

Suppose {(M, g(t)), 0 ≤ t <∞} is a Kähler Ricci flow solution on a Fano surface. If |Rm| is not uniformly bounded along this flow, we can blowup at the maximal curvature points to obtain a limit complete Riemannian manifold X. We show that X must have certain topological and geometric properties. Using these properties, we are able to prove that |Rm| is uniformly bounded along every Kähler Ricc...

متن کامل

(kähler-)ricci Flow on (kähler) Manifolds

One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015